
J .  Fluid Mech. (1983), vol. 128, p p .  21-36 

Printed in Great Britain 
21 

The stabilizing role of differential rotation on 
hydromagnetic waves 

By D. R. FEARN AND M. R. E. PROCTOR 
Department of Applied Mathematics and Theoretical Physics, 

Silver Street, Cambridge CB3 9EW 

(Received 17 June 1982 and in revised form 9 November 1982) 

The role that differential rotation plays in the hydromagnetic stability of rapidly 
rotating fluids has recently been investigated by Fearn & Proctor (1983) (hereinafter 
referred to as I) as part of a wider study related to the geodynamo problem. Starting 
with a uniformly rotating fluid sphere, the strength of the differential rotation was 
gradually increased from zero and several interesting features were observed. These 
included the development of a critical region whose size decreased as the strength 
of the shear increased. The resolution of the two-dimensional numerical scheme used 
in I is limited, and consequently it was only possible to consider small shear strengths. 
This is unfortunate because differential rotation is probably an important effect in 
the Earth’s core and a more detailed study at higher shear strengths is desirable. Here 
we are able to achieve this by studying a rapidly rotating BBnard layer with imposed 
magnetic field B, = & s$ and shear U, = UM sQ(z) $, where (8, $, z )  are cylindrical 
polar coordinates. In the limit where the ratio q of the thermal to magnetic dif- 
fusivities vanishes (q = 0 ) ,  the governing equations are separable in two space 
dimensions and the problem reduces to a one-dimensional boundary-value problem. 
This can be solved numerically with greater accuracy than was possible in the 
spherical geometry of I. The strength of the shear is measured by a modified Reynolds 
number 2p, = UM d / K ,  where d is the depth of the layer and K is the thermal diffusivity, 
and the shear becomes important when R, 2 O( 1) .  It is possible to compute solutions 
well into the asymptotic regime Rt % 1 ,  and details of the behaviour observed are 
dependent on the nature of Q ( z ) .  Specifically, two cases were considered: (a) Q ( z )  has 
no turning point in 0 < z < 1 ,  and (b )  Q ( z )  has a turning point at z = +, 0 < zT < 1 
(Q’(z,) = 0, Q”(zT) =!= 0). In  both cases, as R, increases a critical layer centred at  
z = zL develops, with width proportional to ( a )  R;i, ( b )  Rrf. In the case where Q ( z )  
has a turning point, the critical layer is located at the turning point (zL = zT). The 
critical Rayleigh number R, increases with (a )  R, a R,, ( b )  Rc K 4, and the 
instability is carried around with the fluid velocity at the critical layer. The relevance 
of these results to the geomagnetic secular variation is discussed. 

1. Introduction 
Fearn & Proctor (1983) (hereinafter referred to as I) have discussed the reasons for 

expecting differential rotation in the Earth’s core and why i t  is likely to be of 
importance. They went some way in investigating how shear in the basic rotation 
modifies various modes of hydromagnetic waves and instabilities, but the study was 
limited by the lack of numerical resolution in the spherical geometry considered there. 
In other studies of the onset of convection in rapidly rotating systems the role of 
differential rotation has been badly neglected (see reviews by Roberts & Soward 1972 ; 
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Acheson & Hide 1973; Acheson 1978; Roberts 1978; Eltayeb 1981). This has not 
been because of a lack of recognition of its importance but rather because of the 
mathematical difficulties i t  adds to an already complex problem. The effect of 
differential rotation has received some attention recently, though, and a little 
progress has been made toward an understanding of its role. 

In a diffusionless model with a cylindrical geometry, Acheson (1973) studied the 
stability of the basic state with magnetic field B, = B,(s) and flaw (with respect to 
a rapid uniform rotation) U, = U,(s). Most of Acheson’s results are for U, = 0 and 
he is only able to speculate on the effect on his stability criteria of adding a non-zero 
flow. The inclusion of a non-zero U, proves too much for the global analysis, but in 
a later paper Acheson (1982) has used a local analysis to investigate the stability of 
the basic state 

in a model that incorporates buoyancy as well as diffusion. The global analysis of 
Acheson (1973) (see also Acheson 1972) had shown a positive outward gradient of 
B,/s to be destabilizing. The local analysis supports this and also shows that a positive 
outward gradient of U,/s is stabilizing. These results apply both to the diffusionless 
magnetic-field-gradient instability (Acheson 1972, 1973, 1978) and the buoyancy- 
catalysed instability (Roberts & Loper 1979; Soward 1979; Fearn 1979; Acheson 
1980) which derive their energy from the basic magnetic field (or from the basic flow), 
but have very different instability mechanisms and operate on different timescales. 
An extension of the local analysis to cover the basic state 

(1.1) B, = B,(s) 8, u, = U,(S) 6, 

B, = B,(s, 4 8, u, = U,(s, 4 6 (1.2) 

has been made in I. The presence of z-structure in the basic state was found to be 
destabilizing, and this conclusion was supported by their global solutions. The main 
role of shear in this case is to permit a wider range of instability, but the results tell 
us nothing about how differential rotation modifies instabilities of other types which 
may already exist, for example thermally driven instabilities. 

Braginsky (1980) has investigated how the addition of a differential rotation 
modifies his MAC waves (see Braginsky 1967). His model consists of a rectangular 
channel (the narrow-gap limit of a cylindrical annulus) with a uniform magnetic field 
B, and a sheared flow RtU,(s) directed down the channel. He considers three cases: 
(a )  the basic model with no diffusion and no buoyancy; ( b )  as (a )  but with ohmic 
diffusion; and ( c )  as (a)  but with buoyancy. In  all three cases he finds an increasing 
shear-flow strength R, to be accompanied by a shortening of the lengthscale in the 
direction of V( U,/s) (the &-direction), with the lengthscale inversely proportional to 
Rt. The shortening lengthscale means that diffusion must become important, as 
Braginsky (1980) recognized but he was unable simultaneously to incorporate both 
diffusion and the buoyancy force required to maintain the instability against ohmic 
losses. Adding only the effect of ohmic diffusion he finds a tendency for the 
eigenfunctions to be peaked. This happens where the lengthscale is longer and the 
dissipation less. Braginsky then neglects the diffusion and incorporates a buoyancy 
force. The criterion for the instability of MAC waves (in the diffusionless model) is 
independent of the differential-rotation strength, but increasing R, still results in the 
shortening of the s-lengthscale. The solution is also observed to become localized 
around some radius sL with the width of the localized region O(R,$). 

Braginsky’s (1980) work has demonstrated some of the important effects due to 
differential rotation, but it is clear that many aspects of the problem remain to be 
investigated. The observed shortening of lengthscale means that it is essential to 
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incorporate dissipation into the model. This will have the effect of damping the 
(diffusionless) MAC wave instability so some forcing must also be included. The 
presence of diffusion increases the order of the system of equations describing the 
problem, and new, diffusive, modes of instability are introduced. The effect of the 
differential rotation on these must also be investigated, especially since these modes 
are preferred over the MAC wave mode when the magnetic diffusivity exceeds the 
thermal diffusivity (see Fearn 1979), as is thought to be the case in the core. A further 
area that requires attention is the limit R, % 1 .  Except in very idealized cases, the 
problem requires a numerical solution, and the shortening of lengthscale with 
increasing R, means that the greater the shear the greater the numerical resolution 
required. Braginsky (1980), with limited computing facilities, was unable to consider 
very large shear strengths. 

Our first approach to tackling some of these points is described in I, where an 
attempt was made to construct (and solve) a model of the core which is much more 
realistic than those of previous authors. Any basic state of the form (1.2) could be 
considered, the geometry was spherical, and both diffusion and thermal buoyancy 
were included. The generality of the model had of course to be paid for; the problem 
required a two-dimensional numerical solution and resolution was limited. 
Nevertheless i t  was possible to investigate the role of differential rotation on the 
diffusive modes of instability and an interesting behaviour was observed. As the 
strength of the differential rotation was increased, the perturbation in the temperature 
became increasingly localized. At first sight this appeared to be the same phenomenon 
as observed by Braginsky (1980), but, as we shall show later, it is quite different. The 
peaking of the temperature perturbation is due to the development of a critical layer. 
Outside the layer thermal diffusion is unimportant, but in the layer the phase speed 
of the wave approaches the speed of the fluid and thermal diffusion is required in 
the leading-order balance. However, there is no shortening of lengthscale except in 
the critical layer, in contrast with Braginsky’s diffusionless theory. As already 
mentioned, the numerical method of I is incapable of resolving the critical layer for 
R, % I ,  so a simpler model is required to investigate in detail the role of differential 
rotation. The two essential requirements of such a model are that i t  retain the physics 
of the spherical problem but that its solution can at least be reduced to  a numerical 
solution of an ordinary differential equation. 

Our understanding of several types of instability was greatly improved by a simple 
model due to Soward (1979) (hereinafter referred to as S79), who considered a rapidly 
rotating BBnard layer with applied magnetic field B, = &s4. The resulting linear 
stability equations are separable in all three space dimensions and the problem 
reduces to the solution of a system of algebraic equations, permitting a detailed study 
of the many modes of instability present. This approach seems promising so we shall 
take Soward’s model as our starting point and introduce a sheared flow U, = U, sR(z) 6 
to investigate the role of differential rotation. It should be emphasized that the basic 
state is now rather artificial since we have provided no mechanism for generating U,, 
and it  cannot be specified arbitrarily if B, $; 0. Nevertheless (as discussed in I)  there 
are so many causes of shear in a convecting, rapidly rotating, hydromagnetic system 
that we feel useful information can be gained from a study where U, is chosen and 
varied independently. Retention of separation of variables in all three directions is 
now of course impossible, but provided we restrict ourselves to the diffusive modes 
investigated in I (which operate on the thermal diffusion timescale) and take the 
limit q = 0 (where p = K / V  is the ratio of the thermal to magnetic diffusivities) the 
problem is separable in s and $ as well as time t (see $ 2  for details). The resulting 
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system of ordinary differential equations in z then has to be solved numerically, but 
the resolution available enables asymptotically large values of the shear to be 
considered. The numerical results are given in $3, they are discussed in $4, and 
concluding remarks are made in $5. 

2. The model, simplifications and method of solution 
In  this section we first describe in detail the model under consideration and the 

equations governing its linear stability. Various simplifications are made, limiting the 
scope of the model by filtering out certain modes of instability but retaining those 
in which we are interested and ensuring the equations are separable in two space 
dimensions. The system of equations is essentially the same as that in I (12.3). The 
main differences are the geometry, the basic state, and the boundary conditions. Here 
we shall be considering an electrically conducting fluid confined between two infinite 
parallel flat plates separated by a distance d .  There is a temperature difference AT 
between the lower and upper plates, and the whole system is rapidly rotating with 
angular velocity no = R, 2 about an axis normal to the layer. The fluid is permeated 
by a magnetic field B,, and is moving relative to the rotating frame with velocity 
U, given by 

B, = BM 84, u, = uMsR(Z)4. (2.1) 

To keep the boundary conditions simple we shall take the upper and lower plates to 
be perfect electrical and thermal conductors. The non-dimensional parameters are as 
defined in (12.5) if we replace ro by d and set p = A T / d .  Since this study is restricted 
to thermal diffusion timescale instabilities, it is convenient to have the non- 
dimensionalization on this timescale (rather than the magnetic diffusion timescale 
used in I). This requires the definition of a new dimensionless quantity 

Rt = UMd/K, (2.2) 

and also results in b --t qb, u 
As in I, we are interested in the parameter range A = O( 1)  so viscous and inertial 

terms will again be neglected. Neglecting viscosity means that we must impose only 
one boundary condition on the fluid velocity; that of no normal flow at z = 0, 1 .  
Neglecting inertia has the effect of filtering out inertial timescale instabilities. As it 
stands (12.3) is separable in $ and t ,  but the presence of the term qRtV x (U, x b) 
in the induction equation (I2.3b) prevents separation in s. The diffusive instabilities 
studied in I operate on the thermal diffusion timescale and we are interested in small 
values of q (the molecular diffusivity ratio in the Earth’s core is q - lop6), so to make 
our problem more tractable we shall take the formal limit q = 0. This has the effect 
of removing the offending term in the induction equation, but at the same time limits 
us to investigating only instabilities on the thermal diffusion timescale. These include 
the thermally driven diffusive instability and the magnetically driven buoyancy- 
catalysed instability of I. 

The continuity equations (I2.3d, e )  are automatically satisfied by expanding u and 
b into poloidal and toroidal parts: 

qu and t q-lt in (12.3). 

k 2 U = V x W 2 + V x V x w 2 ,  k 2 b = V x j 2 + V x V x b 2 ,  (2.3) 

where w ,  w, j and b are the vertical (2) components of the vorticity, velocity, current 
and magnetic field respectively, and k is the radial wavenumber defined below. The 
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governing equations with q = 0 are separable in s, 4 and t ,  so we expand all variables 
in the form 

v(s, 4, z, t )  = v(z) J,(ks) earn$ ep t ,  

where v stands for any of the variables p ,  w ,  w,  j, b or 8. Substituting (2.3), (2.4) into 
(12.3) and taking 2 .  V x (12.3a), 2 .  V x V x (12.3a), 2 .  (12.3b), 2 .  V x (12.3b) and 
( 1 2 . 3 ~ )  we obtain 

-Dw = A(-2Db+imj), ( 2 . 5 ~ )  

- Dw = A( - ZDj + im(k2 - D2)  b )  + k2R8, (2.5b) 
0 = imw+(D2-k2) b,  ( 2 . 5 ~ )  

0 = imw+(D2-k2) j ,  
w = @+imRtQ(z) + k2- D2) 8, 

(2.5d) 
(2.5e) 

where D denotes the differential operator d l d z .  Our problem has reduced to an 
eighth-order system of ordinary differential equations subject to  the boundary 
conditions 

This system requires a numerical solution, and some elimination of variables is helpful. 
Using (2.8 c ,  d )  to eliminate w and w ,  (2.8 a ,  b,  e )  become 

(2.6) w = 8 = b = Dj = 0 (Z = 0 , l ) .  

(D2-k2+2imA) Db+Am2j = 0,  

(D2 - k2 - imR, Q ( z ) )  8 + (i /m) (D2 - k2)  b = p 8 ,  
(D2-k2+2imA) Dj-Am2(D2-k2) b-imk2R8 = 0,  (2.7) 

and this is the system we shall solve numerically. It is instructive though to reduce 
(2.10) further to a single equation 

{[ (D2 - k2)  -i(mRt Q(z )  - w ) ]  [(D2 - k2 + 2imA)2D2 +A2m4(D2 - k2)] 
+ RAm2k2(D2 - k2)}b = 0,  (2.8) 

where w = ip is the frequency of the instability. We can see from (2.8) that when 
Rt $ 1 a critical layer will develop where the phase speed of the wave matches the 
fluid velocity (w = mR, Q ( z ) ) ,  and this determines the form of the numerical solution. 
Some details of the numerical methods used are given in appendix A. 

3. Numerical results 
The analysis of $2 was completed while leaving the differential rotation Q ( z )  

unspecified, but before a numerical solution can be computed it is necessary to 
prescribe Q ( z ) .  As long as Q ( z )  is not constant, a critical layer must be present (see 
(2.8)) so we expect that the precise choice of Q ( z )  will not be important. However, 
since the nature of the critical layer is determined by a balance between the term 
D2b and i(mR, Q ( z )  - w )  b in (2.8) it  is necessary to distinguish between flows that have 
a turning point in the layer (Q’(z,) = 0, 0 < zT < 1) and those that do not. For this 
purpose we have chosen to study two flows. The first, 

Q,(Z) = 1-22 ,  (3.1 1 
has no turning point within the layer and is the flow used for most of the results to 
be presented. The second, 

Q 2 ( Z )  = 42(1-Z), (3.2) 
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FIQURE 1 .  The effect of adding a differential rotation is illustrated with graphs of (a )  R,, ( b )  w, and 
( c )  k, against R,. The cases shown are: for C! = 1 - 9  (i) A = 1, m = 2, n = 1 ; (ii) A = 1, m = 2, 
n = 2 ;  (iii) A = 10, m = 2, n = 1; (iv) A = 10, m = 20, n = 1; (v) A = 100, m = 1, n = 1 ,  R < 0; 
andfo rQ=4~(1- -2 ) (v i )A=  l , m = 2 , n = l ; ( v i i ) A = l 0 0 , m =  l , n =  l ,R<O.Incases(i)-(iv) 
and (vi), where the frequency w, is initially negative (w,(R, = 0) < 0) ,  a constant -2w,(R, = 0) has 
been added to w, to facilitate plotting on a logarithmic scale. The code shown in (a)  applies also 
to ( b )  and (c). 

has a turning point at z = 4. Some calculations were made with a third flow 
sZ,(z) = $z( 1 + z ) ,  but the results were qualitatively the same as those obtained using 
(3.1). 

The problem described in $2 reduces to that of 579 in the limit R, = 0. This 
provides a useful starting point for our numerical solutions as well as a necessary check 
on them. With only 50 grid points we found agreement to better than six significant 
figures. Several cases were investigated and the same procedure was adopted for all. 
With R, = 0 we took the S79 solution and specified the parameters: azimuthal 
wavenumber m, vertical wavenumber n (the S79 solutions were separable in z and 
were proportional to either sinnnz or cosnnz), and magnetic-field strength A. This 
done, we found the minimum critical Rayleigh number R, by taking the frequency 
w to  be real (zero growth rate) and minimizing the Rayleigh number over all values 
of the radial wavenumber k. Taking this solution as a starting point, R, was gradually 
increased and the behaviour of the chosen mode was followed until an asymptotic 
(R, + 1) limit was reached. The variation of R,, o, and k, with R, is shown in figure 
1 for the various cases considered. The behaviour of the eigensolution for the case 
A = 1, m = 2 ,  n = 1 is shown in figure 2 for a range of values of Rt and, for comparison, 
the asymptotic limits of the eigensolutions of the other cases a t  R, = lo6 are 
illustrated in figure 3. 

In  all the cases considered, i t  was possible to  compute solutions well into the 

2 FLM 128 
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FIGURE 2. The eigensolutions for b , j  and k a 9  when A = 1, m = 2, n = 1 and 0 = 1 - z2 are shown for 
(a)& = 0, (b )  10, (c )  lo2, ( d )  lo3, ( e )  lo5 and (f)  lo'. The normalization of the eigenfunction has 
been chosen to make the maximum modulus of w equal to unity. The behaviour of w and w are 
not shown as they are similar to b a n d j  respectively (see (2.5c, d) ) .  The horizontal scale is linear, 
with z taking values between 0 and 1. Both real (full line) and imaginary (dashed line) parts of 
the eigenfunction are shown. 
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FIGURE 3. As figure 2 but for R, = lo6, R = 1 -z2 and (a)  A = 1, m = 2, n = 1 ;  ( b )  A = 1, m = 2, 
n = 2;  (e )  A = 10, m. = 2, n = 1; ( d )  A = 100, m = 1, n = 1, R < 0. Cases ( e )  and (f) are as (a) and 
( d )  but with R = 42(1--2). 
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asymptotic regime R, $- 1, and, as can be seen from figure 1,  all modes with t2 given 
by (3.1) behave in the same manner; 

D .  R.  Fearn and M .  R.  E .  Proctor 

R, a R,, w, a R,, k ,  a 4. (3.3) 

R , a R ! ,  w,ccRt, k , a @ .  (3.4) 

Similarly for differential rotation (3.2), 

The only exception to  the above is the behaviour of the critical radial wavenumber 
k, for the buoyancy-catalysed ( R  < 0) modes. Then k ,  increases only very slowly with 
R,, but the reason for this is evident from S79. Soward shows that for R, = 0 the R < 0 
mode can only exist for 6 = k/nn < 2/3, that  is for k < 5.44 when n = 1 .  From the 
behaviour of k ,  shown in figure 1 ( c )  i t  appears that  this condition still holds when 
R, > 0. The contrast in the behaviour of k ,  between the R > 0 and the R < 0 modes 
shows that, at leading order, a in the relation k,  cc Rf is not important. This 
conclusion was supported by increasing R, while keeping k fixed. The behaviour 
of R,, w, is unchanged, though the constants of proportionality differ from those when 
R, is minimized with respect to k .  

When R, = 0, i t  is the n = 1 solutions that are the most unstable (S79), so we have 
concentrated most of our attention on these modes. However, i t  is not possible to 
ignore the n 2 2 modes since we cannot be certain that the n = 1 mode is always the 
most unstable when R, > 0. One check is t o  follow an n 2 2 mode to large values of 
R,. The n = 2 mode shown in figure 1 always has a greater critical Rayleigh number 
than the n = 1 mode, and similarly the corresponding n = 10 mode (not illustrated) 
is always more stable than the n = 2 mode. A second check is to find all the 
eigenvalues of the matrix eigenvalue problem rather than just the one found by 
inverse iteration (see appendix A). For all the modes illustrated in figure 1 we found 
that the n = 1 mode remained the most unstable, well into the asymptotic regime 
a t  R, = lo5. The results were also consistent with the ordering of the modes being 
unchanged, n = 1 being the most unstable, n = 2 the next, then n = 3, and so on. 

4. Discussion 
The plane-layer model considered here has many simplifications compared with the 

spherical model of I, but the physics necessary to investigate the effects of differential 
rotation has not been lost. There are restrictions as to which classes of instability can 
be studied (see also $5) but the results given in $ 3  are consistent with t'hose of I, and 
this suggests that  the more detailed and extensive results of the plane-layer model 
should carry over to  the spherical geometry. I n  both cases the increasing strength 
of differential rotation causes an increasing concentration of the instability in a 
critical layer. The reason for this is that there is a tendency for the instability to be 
carried along with the fluid flow. A perturbation to the basic state can only remain 
in phase on a lengthscale over which diffusion is strong enough to counteract the shear 
in the basic flow. The two classes of instability studied here (and in I) operate on the 
thermal diffusion timescale, which is taken to  be much longer than the magnetic 
diffusion timescale. Therefore there is plenty of time for the magnetic field to  diffuse 
and the perturbed magnetic field is not concentrated. On the other hand, thermal 
diffusion is much weaker and the temperature perturbation is confined to the region 
where thermal diffusion is strong enough to  offset the tearing action of the differential 
rotation. The temperature perturbation is thus concentrated in a critical layer which 
decreases in width as the strength of the differential rotation is increased. The width 
of the critical layer depends also on the gradient of !2. The steeper the gradient, the 



Stabilization of hydromagnetic waves by diaerential rotation 31 

narrower the layer. This has consequences for the location of the mode of instability 
that is most unstable. For a given value of R, there is therefore a tendency for the 
most-unstable mode to  locate itself where dR/dz is small. There are of course other 
influences, but this dominates when there is a zero in the gradient of R. Then, the 
critical layer is located where dR/dz = 0 and the buoyancy force required for 
instability is smaller (R, a @ compared with R, a R, when there is no zero of dR/dz) .  
When R(z) has no turning point there is no simple criterion for the preferred location 
of the critical layer (but see appendix B). For the diffusive thermal instability an 
interior location is chosen in all the cases considered while the buoyancy-catalysed 
instability appears to prefer being located close t o  the boundary where R is largest. 
(This remark is based only on the common feature for flows R, and R3 so should be 
treated with caution.) The influence of the radial wavenumber E is rather weak. It 
shows a tendency to  increase as R, increases, but if it is held fixed the qualitative 
behaviour of R, is the same. 

From the results obtained for large R, i t  appears that the frequency w + mR, R(z,), 
where zL is the location of the critical layer. To leading order this is true, but as we 
shall see, a t  least for the case where R(z) has a maximum, the phase speed of the wave 
must have a westward component with respect to the flow in the critical layer 
(w/m < R, R(zL)) when R > 0. This may be demonstrated by manipulating integrals 
of (2.5) across the layer. If we denote 

( f (z)> = S'f(Z)dZ> 0 (4.1) 

and a superscript * denotes a complex conjugate, then take (8(2.5e)*) ,  (w*(2.5b))  
and ( D w * ( ~ . ~ c ) ) .  We substitute for j from (2 .5a) ,  D2b from (2 .5c) ,  then take 
(b(2.5c)*)  to eliminate (w*b). Taking the imaginary part of the resulting equation 
gives 

while the real part may be written 

I (Dw)  + 4A2k21(b) + m2A2(m2 - 4 )  ( 1 w 1 2, 
m2k2AI( 8) > (4.3) 

where I(w) = ( lDvlB)+k2( lwI2) .  (4 .4)  

R =  

From (4.3) we can see clearly that R must be positive unless m = 1. (The m = 1, 
R < 0 mode is the buoyancy-catalysed instability discussed by Roberts & Loper 
(1979), Fearn (1979) and Acheson (1982).) When R > 0 we can see from (4 .2)  that 
R,R(z) - o / m  > 0 for some z ,  and in the case where 8 is sharply peaked at z = zL 
we must have R, R - w / m  > 0 in some neighbourhood of z = zL. This requirement is 
particularly restrictive if R(z) has a maximum at or close to z = zL because then 
w / m  > R,R(z) for all z except in the immediate neighbourhood of the critical layer. 

5. Concluding remarks 
The effect of differential rotation on two classes of hydromagnetic waves has been 

investigated using a simple model consisting of a rapidly rotating BBnard layer with 
an imposed azimuthal magnetic field and flow (2 .1) .  The results obtained are 
qualitatively similar to those obtained in the more realistic spherical geometry (see 
I) but are much more detailed and extend to  much greater strengths Rt of the 
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differential rotation. As R, is increased above 0 ( 1 )  values a critical layer with 
decreasing lengthscale develops. The two-dimensional numerical solution of I is 
restricted to 0 ( 1 )  lengthscales by the available computer store and speed, but the 
one-dimensional boundary-value problem that has to be solved here is capable of 
resolving very short lengthscales and large values of R, (R, $- 1 )  can be accommodated. 
Of course there is a price to pay for the relative simplicity of the present model. To 
construct a problem that is separable in the radial and azimuthal directions it is 
necessary to take the limit q = 0, which restricts the scope of the present study to 
instabilities operating on the thermal diffusion timescale. There are two such diffusive 
instabilities ; one is thermally driven (the thermal diffusive instability) and the other 
is magnetically driven but requires some stratification to release the energy stored 
in the magnetic field (the buoyancy-catalysed instability). Despite their rather 
different characters, both classes of instability behave in a similar manner, with the 
stratification required for the onset of convection increasing with the strength of the 
differential rotation (see figure la ) .  A critical layer develops about some location 
z = zL as R, is increased and the instability is carried around with the flow at that 
location (o = mR, R(zL) ; see figure 1 b ) .  In the limit q = 0 the magnetic field diffuses 
instantaneously so there is no tendency for the field to be carried along at  different 
speeds at different locations. (This is the opposite limit to perfect conductivity, where 
diffusion is negligible and the field is frozen to the fluid.) In contrast, thermal 
diffusion is negligible except within the critical layer. A temperature perturbation 
in phase with that at z = zL can only be maintained where diffusion is fast enough 
to counteract the effect of the shear in the basic azimuthal flow. Consequently the 
temperature perturbation is confined to where thermal diffusion is important ; that 
is, in the critical layer (see figures 2 and 3 ) .  

The limit q = 0 is very artificial since it means that the magnetic field is unaffected 
by the shear in the basic flow. In practice, with q small but non-zero, we anticipate 
that the magnetic field will begin to feel the effect of the differential rotation when 
R, = O(q-l)  (that is when the magnetic Reynolds number R, = U ,  d / y  = O( 1)).  Then 
we might expect to see a concentration also of the magnetic-field perturbation, so 
the instability generated at zL will be confined to the immediate vicinity of z = zL. 
One reason for studying the diffusive thermal instability is that, when q 5 1 and 
in the absence of differential rotation, i t  is more easily excited than the diffusionless 
MAC waves (Braginsky 1967) (when A 2 0 ( 1 ) ,  R, = O(A) for the diffusive thermal 
instability while R, = O ( A / q )  for MAC waves). However, we have seen that the 
differential rotation has a strong stabilizing effect on the diffusive thermal instability 
so the relative importance of the two classes of thermally driven instability may be 
dramatically changed by the presence of a strong shear. For dynamo action 
magnetic-field generation must exceed diffusive losses, so we must expect R, 2 O( 1) .  
If R, = O(1) then R, = O(q-l)  and, with R, K R,, R, = O(q-') when A = 0 ( 1 )  for the 
diffusive thermal instability. The MAC waves operate on the diffusionless timescale 
Rb/R, where R, = BM/d(ppo)t is the Alfvhn angular velocity, but when A = o(1) 
this is comparable to the magnetic diffusion timescale. We therefore expect that the 
MAC waves will only be affected by the differential rotation when R, 2 O(1). So for 
A = 0 ( 1 )  and R, = O(1) we expect R, = O(q-l)  for MAC waves. Thus the diffusive 
thermal instability may no longer be the most easily excited when a strong shear is 
present. 

There is clearly a need to investigate the effect of differential rotation on the other 
classes of hydromagnetic instability present in rapidly rotating systems. Our picture 
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of which classes are important in the various regions of the A, q parameter space has 
been built upon results for uniformly rotating systems. As we have seen, this may 
be quite misleading if applied to a differentially rotating system. Some progress has 
been made by Braginsky (1980), who investigated the effect of differential rotation 
on MAC waves. He found a shortening of lengthscale throughout the fluid but he was 
unable to incorporate diffusion (which must become important as the lengthscale 
decreases) at the same time as buoyancy. Work is in progress to remove the restriction 
q = 0 and extend the present study to MAC waves and other instabilities operating 
on or about the magnetic diffusion timescale. 

At this stage i t  is possible only to speculate on the role that differential rotation 
plays in the application of the theory of hydromagnetic waves to the geomagnetic 
secular variation. Both diffusive (present work) and non-diffusive (Braginsky 1980) 
theories exhibit the tendency for the instability to be concentrated, although the 
mechanism and the details are different. If the toroidal field is much larger than the 
poloidal field then the magnetic Reynolds number based on the azimuthal flow must 
be large (R, % 1).  I n  such a case we expect that  magnetic-field perturbations may 
be strongly localized. As a consequence, we would expect the magnetic field observed 
a t  the Earth’s surface to be a consequence of waves generated close to the mantle-core 
boundary. The observed secular variation will be due to a combination of the fluid 
motion in that region and the phase speed of the wave relative to  the fluid. Which 
is the more important will depend on the strength R, of the flow and the nature of 
the instability generating the wave. 

This work was funded by the Science and Engineering Research Council of Great 
Britain. 

Appendix A 
There are many established numerical methods for solving one-dimensional 

boundary-value problems, but often special care must be taken when a critical layer 
is present. For example a standard shooting method fails unless combined with some 
technique like orthonormalization (see Davey 1973,1978). If a matrix method is used, 
however, the presence of a critical layer causes no trouble provided that a sufficient 
number of grid points is used to resolve the layer. There is little to choose between 
shooting with orthonormalization and a matrix method using inverse iteration (see 
I; Peters & Wilkinson 1971 a )  provided that fourth-order finite differences are used. 
Unpublished comparisons between these two methods applied to  the Orr-Sommerfeld 
problem show that the time taken to achieve the same accuracy is similar, with the 
inverse-iteration matrix method perhaps about 10 % faster in the cases looked at. We 
therefore adopt this latter methad, since the extra storage necessary is not a critical 
factor in a one-dimensional problem. 

The interval 0 ,< z < 1 is divided into N sections and the system of equations (2.7) 
is transformed into a set of difference equations using fourth-order finite differences 
(whose error is O(NP4)). The resulting matrix eigenvalue problem is of the form 

AX = pBx, (A 1 )  

where B is diagonal and A is banded with bandwidth 25. This system was solved using 
inverse iteration coded in such a way that only the non-zero band of A is stored and 
up to 700 grid points could be accommodated. The procedure adopted to  obtain the 
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results given in $ 3  was to take as a starting point the R, = 0 solution from 879 and 
gradually increase R,. This worked well, but it has one drawback - for R, = 0 we know 
we are looking at the most-unstable mode, but for R, > 0 there is no guarantee. To 
check that the mode followed from R, = 0 remains the most unstable it is necessary 
to find the growth rates of the other modes. The only sure way to do this is to use 
a matrix method which finds all the eigenvalues of the system. In  adapting (A 1 )  for 
use with the LR algorithm (Peters & Wilkinson, 1971 b), round-off errors became a 
problem so an alternative formulation was used. In  place of finite differences, a 
Fourier expansion of the variables b , j ,  and 0 in (2.7) was used and a matrix equation 
of the form 

c9 = p9 (A 21 

constructed. The matrix C is not banded, so the full matrix must be stored, but this 
is necessary anyway when finding all the eigenvalues. The results of this method are 
in agreement with those obtained by finite differences/inverse iteration and they 
confirm that the most unstable mode followed from R, = 0 remains the most-unstable 
mode when R, > 0. 

Appendix B 
We have seen from the numerical results that  for the thermally driven instabilities 

the most-unstable mode has k2 % 1 when R, % 1.  The results also suggest that 
R, - R, when there is no turning point for SZ(z), while R, - @ otherwise. If we 
consider the former case first, and assume that T = mR, % 1 ,  and that R, = TS/Am2, 
then the equations can be reduced to the form 

where 8 = T9 and p = -iTSZ(z,). The small term in D29 must be retained since it 
enables the thermal boundary layer to be constructed. We note that R, is proportional 
to R, and inversely proportional to A and m (cf. figure 1 a). As in $4 it  is instructive 
to form integrals of (Bl)  : 

Thus S > 0 (so the buoyancy-catalysed instability obeys different (and much more 
complicated) asymptotics), and also 0 < zL < 1, confirming the existence of the 
critical layer. The latter is of thickness T-f ,  and within i t  9 - @, so that the integral 
of 9 through the layer is of order unity. The problem can be solved asymptotically 
by finding the solutions to (B 1) with T = that  vanish at z = 0 , l  respectively. Then 
S and zL can be found by applying the conditions that w is continuous at z = zL and 
that Dw has a discontinuity that can be evaluated by consideration of the forced Airy 
equation that (B l b )  reduces to in the critical layer (see e.g. equation (4.23) of 
Braginsky & Roberts 1975). However, a full numerical solution of (B 1)  is in fact much 
simpler, and the numerical results show that i t  is not a simple local condition which 
determines the location of the critical layer. Shear inhibits convection so we expect 
the preferred location of the critical layer to be where the shear is smailest. (Indeed 
this is the case when the shear vanishes; when has a zero a t  z = zT convection 
is most easily driven when the critical layer is located a t  z = zT.) There are other 
competing effects though. These are negligible when the shear has a zero in the layer, 
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but turn out to be significant when there is no zero. To test the effect of varying the 
profile of Q(z)  on the location of the critical layer we chose a modified version of the 
flow (3.1), 

and investigated how zL depends on a and /?. With a = 0, changing /? has no effect 
on zL since the ratio of the shears a t  two different locations is independent of /?. With 
/? = 0 and a = 1 ,  the shear is uniform throughout the layer and we find that location 
of the critical layer in mid-layer (zL = 0.5) is very strongly favoured. (The critical 
value of S is 0 ( 1 ) ,  but, to drive convection in a critical layer a t  a different location 
(zL =b 0 5 ) ,  a value of S > O(100) was found to be required.) As far as the local 
conditions are concerned, there is nothing to distinguish z = 0.5 from any other value 
of z. Thus the effect of the boundaries must be important in determining the preferred 
location of the critical layer, and the absence of other competing effects the preferred 
location is at z = 0.5. If there is a gradient in the shear the competing effect is that 
the critical layer prefers to  be located where the shear is least. The balance between 
these two effects was investigated by taking /? = 1 and increasing a from zero. The 
case a = 0 is that  investigated in $3  with the flow (3.1). There zL z 04. As a is 
increased, the shear becomes more uniform and, as we would expect, zL increases and 
approaches 0 5  as a becomes large. In  summary it is clear that  the preferred location 
of the critical layer cannot be determined by a local condition when the shear is 
everywhere non-zero. Instead, i t  is a competition between the influence of the 
boundaries (which prefer zL = 05) and the constraint of the shear (which prefers 
zL = z ,  : I Q’(z,) I < I Q ’ ( z )  I , 0 < z < 1 )  which determines the preferred location of the 
critical layer. 

It is the integral condition (B 2b) which is the key to determining zL. The 
contribution to the integral from the critical layer is negligible since (8 l2 is symmetric, 
and Q-Q(zL) is antisymmetric about z = zL. The imaginary part of 8 is small 
compared with the real part 8, outside the critical layer (8, = O(2-l) while & = O(Z-4) 
as 2 + co, where 2 = @(z-zc ) ) ,  so the dominant contribution to  (B 2b)  is 
(Q - Q(zL))( 8, l2 integrated over the mainstream. Since gi is small in the mainstream, 
(B l a )  can be approximated by D2w = 0, and we can approximate the profile of wi 

Q(z )  = 1-az-/?z2, (B 3) 

In  the mainstream, (B l b )  gives (Q-Q(z,))$,= wi, so the approximate 
determining the position of the critical layer is 

(B 4) 

condition 

This condition was tested for Q(z )  given by (B 3) ,  and the results were found to be 
in excellent agreement with those obtained by numerical solution of (B 1 ) .  Typically 
the difference between the two answers is less than 0.1 %. I n  the case p = 0, (B 5 )  
reduces to ln(zL/(l -zL)) = 0, whose solution is zL = 0.5, as was found numerically. 
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